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Stochastic resonant media: Effect of local and nonlocal coupling in reaction-diffusion models

F. Castelpoggi* and H. S. Wio†

Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche and Instituto Balseiro,
8400 San Carlos de Bariloche, Argentina

~Received 16 April 1997; revised manuscript received 24 October 1997!

We study the phenomenon of stochastic resonance in spatially extended systems orstochastic resonant
media. Two reaction-diffusion models are analyzed~with one and two components, respectively!, both with a
known form of the nonequilibrium potential that is exploited to obtain first the probability for the decay of the
metastable extended states and second expressions for the correlation function and for the signal-to-noise ratio,
within the framework of a two-state description. The analytical results show that this ratio increases with both
local and nonlocal coupling parameters.@S1063-651X~98!09505-1#

PACS number~s!: 05.40.1j, 02.50.Ey, 87.10.1e
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I. INTRODUCTION

Since its original proposal as a mechanism accounting
the periodicity in Earth’s ice ages@1#, the phenomenon o
stochastic resonance~SR! has been extensively studied fro
both the theoretical and experimental points of view, a
displays one of the most fascinating cooperative effects a
ing out of the interplay between deterministic and rand
dynamics in a nonlinear system. Some recent reviews
conference proceedings clearly show its wide interest and
state of the art@2#. It is worth noting that SR has crosse
disciplinary boundaries and its role in sensory and other b
logical aspects is being explored in diverse experiments@3#.

Very recently the attention of researchers has been
tracted by the particular features of this phenomenon in
case of coupled or extended systems@4–8#, systems that we
call stochastic resonant media@7#. There are particularly in-
teresting results of numerical simulations of arrays
coupled nonlinear oscillators@5# where it is shown that cou
pling between first neighbors enhances the response
weak external periodic signal. In relation to these numer
simulations, we have recently obtained analytical results@7#
with a model that corresponds to the continuous limit of
discrete system analyzed in the above-indicated work. In
study, as in a previous one@8#, the analysis of this phenom
enon in a spatially extended system was made by exploi
previous results@9,10# that were obtained by applying th
notion of the so-callednonequilibrium potential@11# in
reaction-diffusion~RD! models. A related study~also for a
one-component system! was done by analyzing the ove
damped continuous limit of af4 field theory@12#, reaching
analogous results.

In addition to this problem, which corresponds to a loc
coupling, and the study of its associated one-component
model, we have studied the effect of nonlocal couplings
they arise in a two-component RD model of the activat
inhibitor type, in the limit of fast inhibition, where the form
of the nonequilibrium potential is also known@13#. The in-
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terest of such an analysis is apparent, due to the wide ra
of applications of these types of models in chemistry, bi
ogy, medicine, as well as in technology.

Particularly interesting results ensue from the experime
of Ref. @14#. Those experiments~studies of the Belousov
Zhabotinsky reaction, a peroxidase-oxidase reaction, an
minimum-bromate reaction!, done under well-stirred condi
tions, correspond to transitions between a focus and an
cillatory state via a Hopf bifurcation, where both are hom
geneous states. There is also a more recent and also cl
related experimental result that corresponds to the cas
resonant pattern formation in a chemical system@15#. Even
though such cases cannot be described by the activa
inhibitor model in the fast inhibitor limit, they make appare
the relevance of the present results and the interest of fur
studies exploiting the approach shown here.

The organization of the paper is as follows. In Sec. II w
introduce both models and discuss the form of the station
patterns for different boundary conditions~BCs!. We also
introduce the form of the nonequilibrium potential~NEP! for
both cases. In Sec. III we draw on the results for the lo
and local plus nonlocal coupling cases in order to studysto-
chastic resonant media~SRM! and to show the dependenc
of the signal-to-noise ratio~SNR! on the coupling param-
eters and its enhancement. To do this we extend and a
the two-level description of bistable systems due to M
Namara and Wiesenfeld@16#. Finally, we devote Sec. IV to a
general discussion.

II. MODELS OF SPATIALLY EXTENDED SYSTEMS

A. One-component model

We consider first a one-dimensional, one-compon
model of an electrothermal instability@17,18#, which corre-
sponds to an approximation to the continuous limit of t
coupled discrete system studied by Lindneret al. @5#. In pre-
vious studies with this model, we have analyzed the effec
BCs on pattern selection, theglobal stabilityof nonhomoge-
neous structures, and the critical-like behavior due to
coalescence of two patterns when a control parameter is
ied @9,10#.

The bistable RD model that we present here describes
time evolution of a fieldf(x,t), which represents the tem
5112 © 1998 The American Physical Society
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57 5113STOCHASTIC RESONANT MEDIA: EFFECT OF LOCAL . . .
perature profile in the so-called hot spot model in superc
ducting microbridges@19#. It is also a piecewise linear ver
sion of the Schlo¨gl model for an autocatalytic chemica
reaction@20# with spatial dependence. The evolution off is
given by

] tf5D]x
2f2f1u~f2fc! ~1!

in the bounded domainxP@2L,L# with Dirichlet or Neu-
mann BCs at both ends, i.e.,f(6L,t)50 or ]xf(x,t)u6L
50, respectively, andu(x) is the step function. The diffu-
sion constantD is related to the coupling parameter used
the numerical simulations@5#.

It is worth remarking here that the present model is a
related to the so-calledbarreter effector ballast resistor
@18,21,22#. Equation~1! is a dimensionless form of the ind
cated models, where all the effect of the parameters that k
the system away from equilibrium~for instance, the electric
current in the ballast resistor or some reactant concentra
in chemical models! are included infc .

We also note that since the value of the fieldf(x,t) cor-
responds in the indicated models to the deviation from
reference temperature@f(x,t)5T(x,t)2TB with T(x,t) the
temperature field andTB.0 the temperature of the bath i
the ballast resistor# or a reference concentration, it is cle
that, up to a certain limit@i.e., T(x,t)50 or f(x,t)52TB
strictly#, some negative values off(x,t) are allowed. The
relevance of this point will become apparent latter.

The piecewise linear approximation of the reaction te
f (f)52f1u(f2fc) mimicking a cubiclike form was
chosen in order to find analytical expressions for the spati
symmetric solutions of Eq.~1!. It is clear that the trivial
solution f0(x)50, which is linearly stable, exists for th
whole range of parameters and for both BCs.

For the case of Dirichlet BCs, in addition to the trivi
solution, there is only one stable nonhomogeneous struc
fs(x), which presents an excited@fs(x).fc# central zone,
and another similar unstable structurefu

D(x), with a smaller
excited central zone. The latter pattern corresponds to
saddle separating both attractorsf0(x) andfs(x) @9,10,18#.

For Neumann BCs, there is also only one stable solu
in addition to the trivial solution, which is also a homog
neous structuref1(x)5f151, which represents the excite
state (f1.fc), while the unstable structure or saddle sep
rating both stable states is a nonhomogeneous onefu

N(x)
@18#. The form of the patterns in both cases is depicted
Fig. 1.

These patterns shall be extrema of the NEP or Lyapu
functional of our system. The notion of nonequilibrium p
tential has been introduced by Graham and Tel@11# and cor-
responds, loosely speaking, to an extension of the notio
equilibrium thermodynamical potential to nonequilibriu
situations. For the present case, it reads@9,10#

F@f,fc#5E
2L

1L H 2E
0

f

@2f81u~f82fc!# df8

1
D

2
~]xf!2 J dx. ~2!

It can be shown that
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] tf52
dF
df

~3!

and also that it fulfills

dF
dt

52E S dF
df D 2

dx<0. ~4!

This Lyapunov functional offers us the possibility to stud
not only the local, but also the global stability of the patter
as well as the changes associated with variations of mo
parameters@9,10#.

In Fig. 2 we depict, for Dirichlet BCs, the NEPF@f,fc#
evaluated at the stationary patternsf0 (F05F@f0#50),
fs(x) (Fs5F@fs#), andfu(x) (Fu5F@fu

D#), for a system
size L51, as a function offc for two values ofD. The
upper branch of each curve is the NEP forfu

D(x), whereF
attains an extremum~a saddle!. On the lower branch, for
fs(x) and also forf0(x), the NEP has local minima. Fo
each value ofD the curves exist up to a certain critical valu
of fc at which both branches collapse@9,10#. It is interesting
to note that since the NEP forfu

D(x) is always positive and,
for fs(x), Fs is positive for some values offc and alsoFs

→2` as fc→0, Fs vanishes for an intermediate value

FIG. 1. Form of the patterns for the ballast model for~a! Dirich-
let BCs and~b! Neumann BCs. The numbers correspond to~1! the
trivial homogeneous solution@f0(x)#, ~2! the saddle@fu

D(x) or
fu

N(x)#, and ~3! the nonhomogeneous@fs(x)# or ~nontrivial! ho-
mogeneous (f1) stable pattern. We adoptedL51 andfc50.1
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5114 57F. CASTELPOGGI AND H. S. WIO
the threshold parameterfc5fc* , wherefs(x) and f0(x)
exchange their relative stability.

For the case of Neumann BCs~not shown here!, we find
that the behavior ofF@f,fc# is qualitatively similar to the
Dirichlet BC case. The branches corresponding to the ev
ation of the NEP on the stationary solutionsfu

N andf1 have
similar shapes, except for the linear dependence
F@f1 ,fc# on fc and the~important! fact that the barrier
associated withF@fu

N ,fc# is much larger than in the previ
ous case.

B. Two-component model

The general mathematical formulation for theactivator-
inhibitor model in one spatial dimension reads@21–23#

] tu5Du]x
2u1 f ~u,v !,

] tv5Dv]x
2v1g~u,v !, ~5!

whereDu and Dv are the diffusion coefficients of the act
vator u(x,t) and the inhibitorv(x,t), respectively. Both
u(x,t) andv(x,t) are real fields representing the magnitud
of interest and the nonlinear termsf (u,v) andg(u,v) are the
reaction terms.

The null clines, which are the intersections of those~gen-
erally nonlinear! source terms with the (u,v) plane, show
characteristic shapes that can be typically described b
convex line forg(u,v) and a general cubiclike one~with two
extrema and one inflection point! for f (u,v) @21–24#. Those
projections intersect each other at the origin~which counts
for a trivial solution! and eventually on both sides around t
local maximum of f . Those extra intersections anticipa
nontrivial homogeneous solutions and spatial patterns ari
from the bistable situation of the system, which have be
analyzed by several authors@21,22,24–26#. It is worth re-
marking here that, similarly to what happens with the pre
ous one-component model, the fieldsu(x,t) andv(x,t), for
instance, in the case of a chemical system, describe the
viation of some reactant density from a reference value

FIG. 2. Nonequilibrium potentialF, evaluated at the stationar
patterns, for Dirichlet BCs, as a function offc for L51 and two
values ofD: ~1! D51 and~2! D52. The bottom curve correspond
to fs(x) and the top one tofu(x). The bistability pointsfc* are
indicated.
u-

of

s

a

g
n

-

e-
d

hence some negative values are also allowed@21–23#. As in
the previous case, we will work with a simplified~piecewise
linear! version of the activator-inhibitor model alluded t
above, which preserves the essential features, and fix
parameters so as to allow nontrivial solutions to exist. Af
scaling the fields in a standard way, we get a dimension
version of the model as

] tu~x,t !5Du]x
2u2u1u~u2uc!2v,

] tv~x,t !5Dv]x
2v1bu2hv. ~6!

We again confine the system to the interval2L,x,L and
restrict ourselves to imposing Dirichlet BCs in both extrem
@u(6L)5v(6L)50# ~Neumann BCs, as in the previou
case, are less interesting!. Depending on the values of th
parametersuc , b, andh, we can have a monostable~excit-
able! or a bistable situation as qualitatively indicated in R
@13#. In the second case we have two homogeneous sta
ary ~stable! solutions. One corresponds, in the (u,v) plane,
to the point (0,0), while the other is given by (u0,v0), with

u05
h

b1h
, v05

b

b1h
,

implying that the conditionh/(b1h).uc must be fulfilled.
Without losing generality, we may assume that 0,uc,1/2
andu0,2uc @24#. We choose values of the parametersb and
h so as to work in the excitable regime.

The inhomogeneous stationary patterns appear due to
nonlinearity of the system and ought to have activated
gions (u.uc) coexisting with nonactivated regions (u
,uc). This fact, together with the symmetry of the evolutio
equations and BCs, implies the existence of symmetric in
mogeneous stationary solutions. We restrict ourselves to
simplest inhomogeneous, symmetric, stationary solutio
that is, a symmetric pattern consisting of a central reg
where the activator field is above a certain thresholdu
.uc) and two lateral regions where it is below it (u,uc).
As was already discussed@22,24#, different analytical forms
~which are here linear combinations of hyperbolic function!
should be proposed foru and v depending on whetheru
.uc or u,uc . These forms, as well as their first derivative
need to be matched at the spatial location of the transi
point, which we calledxc . Through that matching procedur
and imposing boundary conditions we get the general s
tion for the stationary case. In order to identify the matchi
point xc we have to solve the equationu(xc)5uc , leading in
general to a transcendental equation forxc @27#.

We have analyzed a restricted parameter region in o
to have only two different solutions forxc and associated
with each we have a stationary solution that we will indica
by uu andus , for increasing values of the transition pointxc
@28,29#. The shape of the patterns, at least for the activa
profile, is analogous to those found for the one-compon
case~see Fig. 1!. A linear stability analysis of these solution
indicates thatuu is unstable whileus is locally stable. As
before, the stable states shall correspond to attrac
~minima! of the NEP while the unstable ones are linked
saddles, defining the barrier height between attractors. In
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57 5115STOCHASTIC RESONANT MEDIA: EFFECT OF LOCAL . . .
dition to these two patterns, we always have the triv
~stable! homogeneous solutionu05v050.

We write now the equations of our system specifying
time scale associated with each field. We can then perf
an adiabatic approximation and obtain a particular form
the NEP for this system. Measuring the time variable on
characteristic time scale of the slow variableu ~i.e.,tu), Eqs.
~6! adopt the form@21–23#

] tu~x,t !5Du]x
2u~x,t !2u~x,t !1u„u~x,t !2uc…2v~x,t !,

z] tv~x,t !5Dv]x
2v~x,t !1bu~x,t !2hv~x,t !, ~7!

wherez5tv /tu @31#. At this point we assume that the in
hibitor is much faster than the activator~i.e., tv!tu). In the
limit z→0, we can rewrite Eqs.~7! as

] tu~x,t !5Du]x
2u~x,t !2u~x,t !1Zu„u~x,t !2uc…2v~x,t !,

05Dv]x
2v~x,t !1bu~x,t !2hv~x,t !. ~8!

We can eliminate the inhibitor~which is slavedto the acti-
vator! by solving the second equation using the Green
function method

$2Dv]x
21h%G~x,x8!5d~x2x8!,

v~x!5bE dx8G~x,x8!u~x8!, ~9!

where the Green’s functionG(x,x8) is given by

G~x,x8!55
1

Dvk

sinh@k~L2x8!#

sinh@2kL#
sinh@k~L1x!#, x,x8

1

Dvk

sinh@k~L2x!#

sinh@2kL#
sinh@k~L1x8!#, x.x8,

~10!

with k5(h/Dv)1/2. This slaving procedure reduces our sy
tem to anonlocalequation for the activator only, which ha
the form

] tu~x,t !5Du]x
2u~x,t !2u~x,t !1u„u~x,t !2uc…

2bE dx8G~x,x8!u~x8!. ~11!

From this equation and taking the symmetry of the Gree
function G(x,x8) into account, we can obtain the NEP fo
this system~which we will indicate byH@u,uc# to avoid
confusion with the previous case!, which allows us to obtain

] tu~x,t !52
dH@u,uc#

du
, ~12!

whereH@u,uc# has the form

H~u!5E dxH Du

2
$]xu%21

u2

2
2~u2uc!Q~u2uc!

1
b

2E dx8G~x,x8!u~x8!u~x!J
l

e
m
f
e

-

-

’s

5F@u,uc#1
b

2E dx8G~x,x8!u~x8!u~x!. ~13!

HereF@u,uc# has the same functional form as in Eq.~2!,
replacingf by u andfc by uc . Clearly,H also fulfills the
condition dH/dt<0. The spatial nonlocal term in the NE
takes into account the repulsion between activated zo
When two activated zones approach each other, the expo
tial tails of the inhibitor concentration overlap, increasing
concentration between both activated zones and creatin
effectiverepulsion between them, the Green’s function pla
ing the role of an exponential screening between the a
vated zones.

In Fig. 3 we show the dependence ofH on uc for the
different stationary patterns, withL51 as in the previous
case. The upper branch corresponds to the NEP evaluate
the unstable patternuu (Hu), while the lower one corre-
sponds to the NEP evaluated on the stable~nonhomoge-
neous! patternus (Hs). For the trivial homogeneous solutio
u0 we haveH05H@u0 ,uc#[0. As for the local coupling
case, the lower branchHs is negative for smalluc and be-
comes positive for larger values. At some intermediate po
uc5uc* , we find thatHs5H@us ,uc* #5H050. Hence, at this
point the locally stable patternsus and u0 exchange their
relative stabilities. Also, in the present case, as in the pre
ous one, for some value ofuc ~larger thanuc* ) both branches
uu andus coalesce and dissappear at a critical point@10#.

III. STOCHASTIC RESONANT MEDIA

A. Local coupling

In order to study SR in an extended system or SRM,
must introduce an external noise source and a weak si
that modulates the potentialF about the situation in which
the two wells~representing the two stable states! have the
same depth. This is accomplished by letting the param
fc oscillate aroundfc* ,

fc~ t !5fc* 1dfccos~Vt1w!, ~14!

FIG. 3. Nonequilibrium potentialH for the stationary patterns
for Dirichlet BCs, as a function ofuc for L51, Du51, Dv54, h
50.08, andb50.4. The bottom curve corresponds tous(x) and the
top one touu(x). The bistability pointuc* is indicated.
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5116 57F. CASTELPOGGI AND H. S. WIO
wherew is an arbitrary~random! initial phase. We assum
that the amplitude of the modulation (dfc) is small enough
in order not to destroy the bistability of the system. It
worth remarking here that the present situation shows s
differences from the usual bistable systems. Here the s
f0 has alwaysF050, while what changes from being met
stable to stable~or vice versa! is the statefs(x), that is,Fs

lies above or belowF050, depending on whetherfc is
larger or smaller thanfc* . Also, the barrier associated wit
fu(x), i.e., Fu, increases or reduces accordingly. This b
havior is qualitatively depicted in Fig. 4.

In order to account for the effect of fluctuations, we i
clude in the time evolution equation of our model@Eq. ~1!# a
fluctuating termj(x,t), which we model as an additiv
Gaussian white noise source with zero mean value an
correlation function̂ j(x,t)j(x8,t8)&52gd(t2t8)d(x2x8),
yielding a stochastic partial differential equation for the ra
dom field f(x,t). The parameterg denotes the noise
strength.

Strictly speaking, the fluctuations cannot be Gaussian,
must have an absorbing boundary at the lower limit@i.e., T
50,TB or f(x,t)52TB,0 for the case of the ballast re
sistor# where the noise has to vanish. However, we exp
that the differences introduced by the Gaussian negative
beyond the indicated absorbing boundary will not drastica
change our results~this is in fact justified by the qualitative
agreement with the simulations of Ref.@5#!. For this reason
and in order to simplify the analysis, in what follows w
assume that fluctuations are Gaussian.

When studying zero-dimensional or nonextended syst
the usual methodology has been to estimate the deca
time by means of Kramers-like formulas. However, the
have been a few attempts to go beyond such an approx
tion ~which, as a matter of fact, loses its validity when t
size of the fluctuations becomes of the same order as
barrier height!, for instance, through a Floquet analysis@30#
to study such a nonstationary situation. Clearly, for exten

FIG. 4. Qualitative~one dimensional! behavior for the nonequi-
librium potential under the effect of an external modulation for t
ballast model. Heref0, fu , andfs indicate the ‘‘points’’ of the
trivial homogeneous solution, the unstable nonhomogeneous s
tion, and the stable nonhomogeneous solution, respectively. Alt
indicates an arbitrary initial time, whileT corresponds to the modu
lation period.
e
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systems such a kind of analysis is far from trivial~and be-
yond the scope of the present study! as we need to conside
a functional ~or infinite-dimensional! Fokker-Planck equa-
tion. Hence we adopt a viewpoint analogous to that used
zero-dimensional systems, that is, to look for extensions
the Kramers approach to the present situation.

At this point we exploit a scheme, based on path-integ
techniques, that allows us to describe the decay of exten
metastable states@32#, yielding the following Kramers-like
result for the decaying time or first-passage time^t&:

^t&5t0expH DF@f,fc#

g J , ~15!

where

DF@f,fc#5F@funst~y!,fc#2F@fmeta~y!,fc#. ~16!

The prefactort0 is determined by the curvature ofF@f,fc#
at its extrema. The range of validity of this expression
analogous to that of the classical Kramers formula. As
approximation essentially rests on extracting the contribut
from the most probable trajectory, its validity is also r
stricted to a region where the noise intensity is much sma
than the barrier height. Due to the difficulties in improvin
such an evaluation of the decay time, as in the case of n
extended systems@1,7,8,12,16# we will continue using this
expression even beyond its validity range. In Fig. 5 we sh
the form ofDF@f0 ,fc# ~line 1! andDF@fs ,fc# ~line 2! as
a function offc . Clearly, these curves are also related to
behavior of ln(̂t&/t0). For the spatially extended problem, w
need to evaluate the space-time correlation funct
^f(y,t)f(y8,t8)& and to make a double Fourier transform
the correlation function in order to obtain, instead of t
power spectrum, thegeneralized susceptibility S(k,v) @22#.

To proceed with the calculation of the correlation functi
we use a simplified point of view~due to the bistable char
acter of our problem potential!, based on the two-state ap
proach of McNamara and Wiesenfeld@16# and described in
the Appendix, which allows us to apply some of their resu
almost straightforwardly. We restrict the description by a

lu-
,

FIG. 5. Behavior, for the ballast model, of the barrier height
a function of fc : 1 corresponds to the barrier forfs(x)
(DF@fs ,fc* #) and 2 the barrier forf0(x) (DF@f0 ,fc* #). We took
L51 andD51.
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57 5117STOCHASTIC RESONANT MEDIA: EFFECT OF LOCAL . . .
suming that the relaxation of the system inside each basi
attraction towards the corresponding attractor is much fa
than the typical transition time between attractors~a study of
the linear stability eigenvalues indicates that this is the c
if V is small enough!. Hence we shall concentrate on th
transitions between both stationary statesf0 and fs . To
calculate the correlation function we need to evaluate
transition probabilities between our two statesf0 and fs ,
which appear in the associated master equation

W0,s5t0
21exp~2DF0,s@f0,s ,fc#/g!, ~17!

wheret0, an estimation of the curvature at the potential e
trema, is given by the asymptotically dominant linear stab
ity eigenvalues

t05
2p

Aulunulst

(lun is the only unstable eigenvalue aroundfu andlst is the
average of the minimum eigenvalues aroundf0 andfs) and
for small dfc ,

DF@f,fc#'DF@f,fc* #1dfcF]DF@f,fc#

]fc
G

f
c*

3cos~Vt1w!. ~18!

In analogy to the nonextended case, we have assu
here that, as we will only work in the limit of very small an
very slow modulation~that is, both dfc and V small
enough!, the nonstationary transition probability can be p
turbatively expanded indfc , as we only require the solutio
of the master equation up to first order in this parame
Solving the master equation, it is possible to evaluate
correlation function and to perform its Fourier transform
time as well as in space in order to obtain the generali
susceptibilityS(k,v). These expressions are similar to tho
obtained by McNamara and Wiesenfeld@16# ~see the Appen-
dix!. Using a by now standard definition for the SNR, w
have shown in the Appendix that the relevant part of
SNR is given by

R;S L

t0g D 2

exp~22DF@f,fc* #/g!, ~19!

with

L5FdDF
dfc

G
f

c*
dfc . ~20!

Equation ~19! is analogous to what has been obtained
zero-dimensional systems, but whereL, t0, andDF@f,fc* #
contain all the relevant information regarding the spatia
extended character of the system.

In Fig. 6 we show the dependence of the present SNR
g for typical values of the parameters~same as in the previ
ous figures! and different values ofD. We can see that the
response increases for increasing values ofD. In Fig. 7 we
show the dependence of the SNR~for fixed noise! as a func-
tion of D that, according to the continuous limit of the sy
of
er
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tem studied in Ref.@5#, plays the role of the coupling param
eter. This result is in excellent qualitative agreement with
recent numerical results for a system of coupled nonlin
overdamped oscillators@5#.

B. Local plus nonlocal coupling

Here we proceed as in the previous case and consider
the modulation is introduced through the activator thresh

uc~ t !5uc* 1duccos~Vt1w!, ~21!

where uc* ~as fc* before! is the threshold value at which
H@us(x),uc* #[0. The choice of the parameters was su
that we have a bistable situation~only two attractors! in or-
der to be able to exploit the same approach indicated be
@32#. We assume that the noise only enters~additively! into
the activator equation@33#.

The main difference from the previous case arises fr
the extra~nonlocal! term inH@u,uc# when compared with
F@f,fc# @see Eq.~13!#. Hence, in addition to the depen
dence onDu ~the analysis indicates that the dependence
Dv is negligible!, we also have the dependence on the

FIG. 6. SNR for the local coupling case, as a function of t
noise intensityg @Eq. ~17!#, for ~1! D50.9,~2! 51.0, and~3! 51.1.
We fixedfc5fc* , L51, dfc50.01, andV50.01.

FIG. 7. For the local coupling case, the SNR as a function oD
for the same parameters as in Fig. 6 and two values of the n
intensity: ~1! g50.02 and~2! g50.01.
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rameterb, which measures the strength of the nonlocal c
pling. In the limit of b→0, we exactly recover the case wit
only a local interaction.

It is clear that in the spatial bistable case, coming from
original excitable regime we have analyzed, we will obta
the same kind of result for the first-passage time^t&, that is,
an equation similar to Eq.~15! but replacingDF by DH
@with a definition analogous to Eq.~16!#. Using again the
two-state approach@16#, we will get expressions for the tran
sition probabilitiesW0,s similar to the ones indicated in Eq
~17!. For smallduc we will obtain

DH@u,uc#'DH@u,uc* #1daF]DH@u,uc#

]uc
G

u
c*
cos~Vt1w!.

~22!

All these steps will lead us, in the present case, to an exp
sion for the SNR analogous to the one in Eq.~19!, whereDF
is replaced byDH andt0, L are similar quantities~an esti-
mation of the curvature at the potential extrema andL
5@dDH/duc#u

c*
duc , respectively!. In Fig. 8 we show the

dependence of the SNR on the noise intensity for three
ues ofDu and a fixedb. Figure 9~a! depicts the dependenc
of the SNR~for fixed noise andb) on Du , while Fig. 9~b!
does the same~for fixed noise andDu) on b. The enhance-
ment of the SNR with increasingDu and/orb is apparent
from these figures.

IV. DISCUSSION

In order to study the phenomenon of SR in coupled
extended systems or SRM~with the aim to encourage exper
mentalists dealing with distributed electronic, chemical,
biological systems to search for alternative variables to t
up so as to enhance the stochastic resonant response o
system! we have analyzed two models corresponding to
cases of local and local plus nonlocal coupling. These m
els are associated with a bistable monocomponent and
activator-inhibitor RD system, respectively. The analy
was done by exploiting the knowledge of the form of t
nonequilibrium potential.

FIG. 8. SNR for the nonlocal coupling case, as a function of
noise intensityg @analogous to Eq.~17!#, for ~1! Du50.9,~2! 51.0,
and ~3! 51.1. We fixeduc5uc* , L51, da50.01, andV50.01.
The rest of the parameters are as in Fig. 3.
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The case of local coupling corresponds to the continu
limit of the discrete model discussed by Lindneret al. @5#,
which is associated with a coupled set of nonlinear osci
tors in the overdamped limit. We have shown that, in agr
ment with those simulations, the present results indicate
enhancement of the SNR as a function of the diffusion c
stantD that plays the role of the coupling parameter. Such
effect is more remarkable for Dirichlet BCs than for Ne
mann BCs. This difference can be attributed, according
Eq. ~19!, to the fact that the size of the potential barri
separating both attractors is larger for the latter than in
former case. This difference in the barrier size can be in
preted as follows. For Neumann BCs, the stable station
patterns have a homogeneous structure indicating a m
‘‘rigid’’ behavior when subject to fluctuations, implying tha
the transitions will be similar to the uncoupled (D50) case,
a situation that can be easily evaluated@29#. On the other
hand, for Dirichlet BCs, the nonhomogeneity of one of t
stable stationary patterns~with part of the pattern below the
thresholdfc) makes it easier for the fluctuations to induce
transition between both attractors. This interpretation, wh
at first sight seems to be restricted to the present piece
linear model, can also be extended to more general bist
models@29#.

e

FIG. 9. SNR for the nonlocal coupling case,~a! as a function of
Du for two values of the noise intensity:~1! g50.02 and~2! g
50.01 and~b! as a function ofb for different values ofDu : ~1!
Du51.1, ~2! 51, and~3! 50.9. The rest of the parameters are as
Fig. 8.
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It is worth remarking here that the present calculat
breaks down for large values ofD. This is because, for in
creasingD, the curves in Fig. 2 shift to the left while th
barrier separating the attractors tends to zero, making inv
the applicability of Eq.~19!. We see from Eq.~1! that this
limit corresponds to diffusion in a monostable potential.

Regarding the activator-inhibitor case, the present res
in addition to the enhancement due to the local coupling, a
show an enhancement of the system’s response with the
local coupling parameter. The main contribution to this
fect again comes from the reduction of the potential bar
when this parameter increases. It is clear that this sys
corresponds to a more interesting and useful case of a
linear oscillator than for the local coupling case, describ
not only a pure bistable but also an excitable~and more
realistic! situation. We must remark here that, as in the lo
coupling case, the present form of calculation for the non
cal coupling breaks down for large values ofDu or b for the
same reasons as before. The extension of the present for
analysis to a full ~nonslaved! version of the activator-
inhibitor case is under way@34#.

The relevance of these results for technological appl
tions in signal detection as well as its biological implicatio
are apparent@35–40#. Many distributed electronic circuits
can be regarded in the continuum limit as a set of diffusiv
coupled nonlinear oscillators. With regard to chemical s
tems, in addition to the particularly interesting results in e
periments on several reactions done under well-stirred c
ditions @14#, there is a more recent and also closely rela
experimental result that corresponds to the case of reso
pattern formation in a chemical system@15#, indicating the
possibility of the appearance of SR under nonstirred con
tions. Even though such cases cannot be described by
activator-inhibitor model in the fast inhibitor limit, the
make apparent the relevance of such results and the int
of further studies exploiting the approach shown here. Si
the present resultspredict a strong dependence of the S
upon both spatial and interspecies coupling parameters
hope that they can motivate not only new simulations
coupled sets of such nonlinear oscillators~in the spirit of the
numerical analysis of Ref.@5#!, but also the experimenta
search of this spatially dependent phenomenon in chem
and coupled electronic systems. In particular, we expect
by exploiting an experimental setup similar to the one in R
@15#, with a low-amplitude~below threshold! forcing plus
noise, a SRM phenomenon will show up.

Finally, it is worth noting that, in addition to the approx
mation involved in the Kramers-like expression in Eq.~15!
and the two-level approximation used for the evaluation
the correlation function, all the previous results~form of the
patterns and nonequilibrium potential! are analytically exact.
However, in a more careful analysis of the problem we c
expect different strengths for the SR phenomena for differ
wavelengths that could lead to some kind of spatiotemp
synchronization phenomenon. The dependence of the ge
alized susceptibilityS(k,v) on k and v, which will not
necessarily factorize, will also imply thatRSN;RSN(k,v).
These aspects are currently under study.
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APPENDIX

According to the theory of McNamara and Wiesenfe
@16#, the bistable case is reduced to a two-state system, c
acterized by the occupation probabilities of both statesn1

and n2 for the ~symmetric! states2c and c, respectively
~with n11n251). The master equation for these occup
tion probabilities is

ṅ1~ t !5W2~ t !n2~ t !2W1~ t !n1~ t !, ~A1!

whereW6(t) are the~time-dependent! transition probabili-
ties from the right (c) to the left (2c) well and vice versa,
respectively. The general solution solution of Eq.~A1! is

n1~ t !5g~ t !21Fn1~ t0!g~ t0!1E
t0

t

dt8W2~ t8!g~ t8!G ,
~A2!

with g(t)5exp$*0
t dt8@W2(t8)1W1(t8)#%.

In Ref. @16#, to the lowest order in the amplitude of th
modulation, the adopted form of the time-dependent tran
tion probabilities was@see Eq.~3.7! in @16##

W6~ t !5 f „m6e cos~Vt !…'
1

2
@a07a1e cos~Vt !#1O~e2!,

~A3!

with e a smallness parameter~proportional to the modulation
amplitude! and

a052 f ~e50!,

a1522
d f

de U
e50

,

where f (m) is essentially given by the inverse of the Kram
ers time. Hence all the information about the transition pro
abilities is contained ina0 anda1.

The result for the power spectrum@see Eqs.~3.12! and
~3.13! in @16## was

S~v!5F12
a1

2e2

2~a0
21V2!

GF 2a0c2

~a0
21v2!

G
1

pc2a1
2e2

2~a0
21V2!

@d~v2V!1d~v1V!#. ~A4!

From this power spectrum the SNR results

R~a0 ,a1!'
pa1

2e2

4a0
F12

a1
2e2

2~a0
21V2!

G21

. ~A5!

These results, obtained for the symmetric case, can
inmediately adapted for the nonsymmetric case. Assume
have the minima atc1 and c2 instead of at6c. Hence,
changing to new coordinates defined byx85ax1b, with a
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5(c22c1)/2 andb5(c21c1)/2, the correlation function will
be multiplied bya2 and we must replacec2 by @c22c1/2#2

in the power spectrum and similarly in the SNR.
In our case~say, the local coupling one! we have reduced

our problem to the transitions between two statesf0[0 and
fs(x), in the neighborhood of the bistable pointfc5fc* .
With the above-indicated change in the nonsymme
bistable case and taking into account the forms ofW0,s indi-
cated by Eqs.~17! and~18!, we can identify the actual form
of a0 anda1, yielding an expression for the correlation fun
tion similar to Eq.~3.12! in Ref. @16#, where we shall iden-
tify c1 by f0(x) and c2 by fs(x), yielding an essentially
e

rk-
s
by

d

-
.

C

hy

d

ev

, J
c

spatially independent SNR. Its double Fourier transform
yields the generalized susceptibility given by

S~k,v!5F~k!S~v!, ~A6!

where F(k);d(k), k and v being the Fourier conjugate
variables to the space and time ones.S(v), the usual power
spectrum function~function only of v), again becomes the
relevant quantity. Finally, the relevant contribution for th
SNR is the one indicated in Eq.~19! with L given by Eq.
~20!.
s.

n-

le
re

the

il-

dif-

-

@1# R. Benzi, A. Sutera, and A. Vulpiani J. Phys. A14, L453
~1981!.

@2# F. Moss, inSome Problems in Statistical Physics, edited by G.
Weiss~SIAM, Philadelphia, 1992!; Proceedings of the NATO
Advanced Research Workshop on Stochastic Resonanc
Physics and Biology, edited by F. Mosset al. @J. Stat. Phys.70
~1/2!, ~1993!#; Proceedings of the Second International Wo
shop on Fluctuations in Physics and Biology: Stochastic Re
nance, Signal Processing and Related Phenomena, edited
Bulsaraet al. @Nuovo Cimento D17, ~1995!#; L. Gammaitoni,
P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys.70,
223 ~1998!.

@3# J. K. Douglaset al., Nature ~London! 365, 337 ~1993!; J. J.
Collins et al., ibid. 376, 236 ~1995!; S. M. Bezrukov and I.
Vodyanoy,ibid. 378, 362 ~1995!; 385, 319 ~1997!.

@4# A. Bulsara and G. Schmera, Phys. Rev. E47, 3734~1993!; P.
Jung, U. Behn, E. Pantazelou, and F. Moss, Phys. Rev. A46,
R1709~1992!.

@5# J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, an
A. Bulsara, Phys. Rev. Lett.75, 3 ~1995!; Phys. Rev. E53,
2081 ~1996!.

@6# P. Jung and G. Mayer-Kress, Phys. Rev. Lett.74, 208 ~1995!.
@7# H. S. Wio and F. Castelpoggi, inProceedings of the Confer

ence UPoN’96, edited by C. R. Doering, L. B. Kiss, and M
Schlesinger~World Scientific, Singapore, 1997!; F. Castel-
poggi and H. S. Wio, Europhys. Lett.38, 91 ~1997!.

@8# H. S. Wio, Phys. Rev. E54, R3045~1996!.
@9# G. Izús, O. Ramirez, R. Deza, H. S. Wio, D. Zanette, and

Borzi, Phys. Rev. E52, 129 ~1995!; G. Izús, H. S. Wio, J.
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