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Stochastic resonant media: Effect of local and nonlocal coupling in reaction-diffusion models
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We study the phenomenon of stochastic resonance in spatially extended syststoshastic resonant
media Two reaction-diffusion models are analyz@dth one and two components, respectiyelyoth with a
known form of the nonequilibrium potential that is exploited to obtain first the probability for the decay of the
metastable extended states and second expressions for the correlation function and for the signal-to-noise ratio,
within the framework of a two-state description. The analytical results show that this ratio increases with both
local and nonlocal coupling parametelS1063-651X98)09505-1

PACS numbdrs): 05.40+j, 02.50.Ey, 87.10te

[. INTRODUCTION terest of such an analysis is apparent, due to the wide range
of applications of these types of models in chemistry, biol-

Since its original proposal as a mechanism accounting fopgy, medicine, as well as in technology.
the periodicity in Earth’s ice agdd], the phenomenon of Particularly interesting results ensue from the experiments
stochastic resonand&R) has been extensively studied from of Ref. [14]. Those experimentsstudies of the Belousov-
both the theoretical and experimental points of view, as iZhabotinsky reaction, a peroxidase-oxidase reaction, and a
displays one of the most fascinating cooperative effects arighinimum-bromate reactiondone under well-stirred condi-
ing out of the interplay between deterministic and randontions, correspond to transitions between a focus and an os-
dynamics in a nonlinear system. Some recent reviews anéillatory state via a Hopf bifurcation, where both are homo-
conference proceedings clearly show its wide interest and th@eneous states. There is also a more recent and also closely
state of the arf2]. It is worth noting that SR has crossed related experimental result that corresponds to the case of
disciplinary boundaries and its role in sensory and other bioresonant pattern formation in a chemical sys{érs]. Even
logical aspects is being explored in diverse experimfits though such cases cannot be described by the activator-

Very recently the attention of researchers has been athhibitor model in the fast inhibitor limit, they make apparent
tracted by the particular features of this phenomenon in théhe relevance of the present results and the interest of further
case of coupled or extended systei#s8], systems that we studies exploiting the approach shown here.
call stochastic resonant medja]. There are particularly in- The organization of the paper is as follows. In Sec. Il we
teresting results of numerical simulations of arrays ofintroduce both models and discuss the form of the stationary
coupled nonlinear oscillatof§] where it is shown that cou- patterns for different boundary conditioiBCs). We also
pling between first neighbors enhances the response to iatroduce the form of the nonequilibrium potentilEP) for
weak external periodic signal. In relation to these numericapoth cases. In Sec. lll we draw on the results for the local
simulations, we have recently obtained analytical redilts  and local plus nonlocal coupling cases in order to ststdy
with a model that corresponds to the continuous limit of thechastic resonant medi¢€SRM) and to show the dependence
discrete system analyzed in the above-indicated work. In thadf the signal-to-noise ratio(SNR) on the coupling param-
study, as in a previous or8], the analysis of this phenom- eters and its enhancement. To do this we extend and apply
enon in a spatially extended system was made by exploitinghe two-level description of bistable systems due to Mc-
previous result§9,10] that were obtained by applying the Namara and Wiesenfe[d 6]. Finally, we devote Sec. IV to a
notion of the so-calledhonequilibrium potential[11] in  general discussion.
reaction-diffusion(RD) models. A related studyalso for a
one-component systenwas done by analyzing the over- Il. MODELS OF SPATIALLY EXTENDED SYSTEMS
damped continuous limit of &* field theory[12], reaching
analogous results.

In addition to this problem, which corresponds to a local We consider first a one-dimensional, one-component
coupling, and the study of its associated one-component Rihodel of an electrothermal instabilif 7,18, which corre-
model, we have studied the effect of nonlocal couplings asponds to an approximation to the continuous limit of the
they arise in a two-component RD model of the activator-coupled discrete system studied by Lindeeal.[5]. In pre-
inhibitor type, in the limit of fast inhibition, where the form vious studies with this model, we have analyzed the effect of
of the nonequilibrium potential is also knoWa3]. The in-  BCs on pattern selection, tlggobal stabilityof nonhomoge-

neous structures, and the critical-like behavior due to the
coalescence of two patterns when a control parameter is var-
*Present address: Centro de Estudios AvanzddB#\), Uriburu  ied [9,10].
950 1°, Buenos Aires, Argentina. The bistable RD model that we present here describes the
"Electronic address: wio@cab.cnea.edu.ar time evolution of a fieldp(x,t), which represents the tem-

A. One-component model
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perature profile in the so-called hot spot model in supercon- ' ' ' 7
ducting microbridge$19]. It is also a piecewise linear ver-
sion of the Schigl model for an autocatalytic chemical
reaction[20] with spatial dependence. The evolutiongfis
given by

0.30

dp=Ddp—p+ 0(p— bc) (1)

in the bounded domaire[ —L,L] with Dirichlet or Neu-
mann BCs at both ends, i.af(=L,t)=0 or dyd(X,t)]+
=0, respectively, and(x) is the step function. The diffu-
sion constanD is related to the coupling parameter used in 0.00F
the numerical simulations]. : !

It is worth remarking here that the present model is also -1.0 -0.5 0.0 0.5 1.0
related to the so-calletbarreter effector ballast resistor X (arb. units)
[18,21,23. Equation(1) is a dimensionless form of the indi-
cated models, where all the effect of the parameters that keeg. 12F 7 ' ' " ' " ! T
the system away from equilibriuttior instance, the electric
current in the ballast resistor or some reactant concentrationgy 3
in chemical modelsare included ing,. 0.8

We also note that since the value of the fiel¢x,t) cor-
responds in the indicated models to the deviation from a
reference temperatufep(x,t) =T(x,t) — Tg with T(x,t) the
temperature field and@z>0 the temperature of the bath in
the ballast resistdror a reference concentration, it is clear
that, up to a certain limifi.e., T(x,t)=0 or ¢(x,t)=—Tg
strictly], some negative values af(x,t) are allowed. The
relevance of this point will become apparent latter. . e

The piecewise linear approximation of the reaction term -1.0 -0.5 0.0 0.5 1.0

f(¢p)=—o+ 0(p— @) mimicking a cubiclike form was X (arb. units)
chosen in order to find analytical expressions for the spatially ’

0.15

¢'est(X) (arb. units)

O

(ZI 2. T ]

Peg(X) (arb. unit

symmetric solutions of Eq(1). It is clear that the trivial FIG. 1. Form of the patterns for the ballast model @rDirich-
solution ¢(x) =0, which is linearly stable, exists for the let BCs and(b) Neumann BCs. The numbers correspondiiothe
whole range of parameters and for both BCs. trivial homogeneous solutiofige(x)], (2) the saddlef ¢2(x) or

For the case of Dirichlet BCs, in addition to the trivial #}(x)], and(3) the nonhomogeneoush(x)] or (nontrivial) ho-
solution, there is only one stable nonhomogeneous structumeogeneous ¢,) stable pattern. We adoptéd=1 and¢.=0.1
¢<(X), which presents an excitg@d (x) > ¢.] central zone,
and another similar unstable structuﬁg(x), with a smaller OF
excited central zone. The latter pattern corresponds to the dp=— % ©)
saddle separating both attractefg(x) and ¢¢(x) [9,10,18.

For Neumann BCs, there is also only one stable solutiomnd also that it fulfills
in addition to the trivial solution, which is also a homoge-
neous structureb, (X) = ¢, =1, which represents the excited dr 6F\?
state (> ¢.), while the unstable structure or saddle sepa- dt _f 5¢
rating both stable states is a honhomogeneous gbﬁ'(eo
[18]. The form of the patterns in both cases is depicted inThis Lyapunov functional offers us the possibility to study
Fig. 1. not only the local, but also the global stability of the patterns,

These patterns shall be extrema of the NEP or Lyapuno@s Well as the changes associated with variations of model
functional of our system. The notion of nonequilibrium po- parameter$9,10].
tential has been introduced by Graham and[I&] and cor- In Fig. 2 we depict, for Dirichlet BCs, the NEP ¢, ¢]
responds, loosely speaking, to an extension of the notion dfvaluated at the stationary patterds (F°=7T¢$o]=0),
equilibrium thermodynamical potential to nonequilibrium ¢s(x) (F°=F ¢s]), andp,(x) (F'=F $51), for a system
situations. For the present case, it ref@4.0| sizeL=1, as a function of¢. for two values ofD. The
upper branch of each curve is the NEP fﬁﬁ(x), whereF
attains an extremunta saddle On the lower branch, for
ds(x) and also forgy(x), the NEP has local minima. For
each value oD the curves exist up to a certain critical value
of ¢ at which both branches collapg®10]. It is interesting
to note that since the NEP feh_ (x) is always positive and,
for ¢4(x), F° is positive for some values ab. and alsoF®
It can be shown that — —o as ¢.— 0, F° vanishes for an intermediate value of

dx=<0. (4)

T ®
f[¢,¢c]=fL[—fo [~ '+ 006"~ 4] o’

D
+E((9X<;/>)2 ]dx. 2
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0061 : ' ' ' : ' ] hence some negative values are also alloj@2dd-23. As in
) the previous case, we will work with a simplifiédiecewise
] linean version of the activator-inhibitor model alluded to

—
B ol 3 i above, which preserves the essential features, and fix the
= parameters so as to allow nontrivial solutions to exist. After
e scaling the fields in a standard way, we get a dimensionless
& 000 version of the model as
é 0.03 1 atu(x,t)=Du(9§u—u+ f(u—uy)—v,
— ~UUD T
e
ﬁtv(x,t)ZDv&§v+,8u—77v. (6)
-0.06 1 N 1 " ) 1
0.100 0.125 0.150 0.175

We again confine the system to the interval <x<L and
restrict ourselves to imposing Dirichlet BCs in both extrema
[u(=L)=v(=L)=0] (Neumann BCs, as in the previous
patterns, for Dirichlet BCs, as a function ¢f, for L=1 and two case, are less mterzstibngDependhlng on the values Of_ the
values ofD: (1) D=1 and(2) D=2. The bottom curve corresponds parametersic, 8, and 7, we can have a monostadexcit-

to ¢(x) and the top one tab,(x). The bistability points¢* are ablg or a bistable situation as qualitatively indicated in Rej.
indicated. [13]. In the second case we have two homogeneous station-

ary (stable solutions. One corresponds, in the,f) plane,
to the point (0,0), while the other is given bu%v°), with

¢, (arb. units)

FIG. 2. Nonequilibrium potentiaF, evaluated at the stationary

the threshold parameteb.= ¢z , where ¢5(x) and ¢o(X)
exchange their relative stability.
For the case of Neumann B@sot shown herg we find uo:L Uo:i
that the behavior off[ ¢, ¢.] is qualitatively similar to the B+n’ B+n’
Dirichlet BC case. The branches corresponding to the evalu-
ation of the NEP on the stationary solutioqbg and¢, have  implying that the conditiony/( 8+ 7)>u, must be fulfilled.
similar shapes, except for the linear dependence ofVithout losing generality, we may assume that @,<<1/2
F b1,0.] on ¢. and the(importan) fact that the barrier andug<2u.[24]. We choose values of the parametgrand
associated Wit ¢\ , ] is much larger than in the previ- % so as to work in the excitable regime.
ous case. The inhomogeneous stationary patterns appear due to the
nonlinearity of the system and ought to have activated re-
gions (U>u,) coexisting with nonactivated regionsu (
<u.). This fact, together with the symmetry of the evolution
The general mathematical formulation for thetivator-  equations and BCs, implies the existence of symmetric inho-
inhibitor model in one spatial dimension regd@i-23 mogeneous stationary solutions. We restrict ourselves to the
simplest inhomogeneous, symmetric, stationary solutions,
that is, a symmetric pattern consisting of a central region
where the activator field is above a certain threshald (
dw=D,d%v+9(u,v), (5  >u,) and two lateral regions where it is below <€ uy).

As was already discuss¢@?2,24], different analytical forms
whereD, andD, are the diffusion coefficients of the acti- (which are here linear combinations of hyperbolic functjons
vator u(x,t) and the inhibitorv(x,t), respectively. Both should be proposed fon and v depending on whetheu
u(x,t) andv(x,t) are real fields representing the magnitudes>u. or u<u.. These forms, as well as their first derivatives,
of interest and the nonlinear terri@u,v) andg(u,v) are the need to be matched at the spatial location of the transition
reaction terms. point, which we callec, . Through that matching procedure

The null clines, which are the intersections of thégen-  and imposing boundary conditions we get the general solu-
erally nonlinear source terms with theu(v) plane, show tion for the stationary case. In order to identify the matching
characteristic shapes that can be typically described by pointx. we have to solve the equatiarix;) =u., leading in
convex line forg(u,v) and a general cubiclike orfeith two ~ general to a transcendental equationXgf27].
extrema and one inflection pojrfor f(u,v) [21-24. Those We have analyzed a restricted parameter region in order
projections intersect each other at the origivhich counts to have only two different solutions fax, and associated
for a trivial solution) and eventually on both sides around the with each we have a stationary solution that we will indicate
local maximum off. Those extra intersections anticipate by u, andug, for increasing values of the transition poit
nontrivial homogeneous solutions and spatial patterns arising®8,29. The shape of the patterns, at least for the activator
from the bistable situation of the system, which have beemrofile, is analogous to those found for the one-component
analyzed by several authof21,22,24—-2% It is worth re- case(see Fig. 1 A linear stability analysis of these solutions
marking here that, similarly to what happens with the previ-indicates thatu, is unstable whileug is locally stable. As
ous one-component model, the fieldc,t) andv(x,t), for  before, the stable states shall correspond to attractors
instance, in the case of a chemical system, describe the déninima of the NEP while the unstable ones are linked to
viation of some reactant density from a reference value andaddles, defining the barrier height between attractors. In ad-

B. Two-component model

du=D,d2u+f(u,v),
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dition to these two patterns, we always have the trivial i '
(stablé homogeneous solution’=v°=0. 0.06 1
We write now the equations of our system specifying the ~
time scale associated with each field. We can then perform & 0.03r 3 .
an adiabatic approximation and obtain a particular form of g
the NEP for this system. Measuring the time variable on the .g  0-90 2
characteristic time scale of the slow variahblé.e., 7,), Egs. S \
(6) adopt the forn{21-23 = -0.03r L i
= 1
Au(x,t)=Dyd2u(x,t) —u(x,t)+ o(u(x,t) — ug) —v(x,t), o -0.06r 1
Lo (1) =D, v (x,H)+ Bu(x,t) — pu(x,t),  (7) -0.09F . . )
0.05 0.10 0.15 0.20

where {=7,/7, [31]. At this point we assume that the in-
hibitor is much faster than the activatgre., 7,<7,). In the
limit {—0, we can rewrite Eq7) as

u, (arb. units)

FIG. 3. Nonequilibrium potentiaH for the stationary patterns,
for Dirichlet BCs, as a function ofi; for L=1,D,=1,D, =4,
=0.08, andB=0.4. The bottom curve correspondsugx) and the
top one touy(x). The bistability pointu} is indicated.

Au(x,t) =D, d2u(x,t) — u(x,t) + ZAu(x,t) — ug)—v(x,t),
0=D,d2v(X,t)+ Bu(x,t) — v (X,t). (8)

We can eliminate the inhibitofwhich is slavedto the acti- B , , ,
vaton by solving the second equation using the Green’s- =Juuc]+ 5 | dXGXxHu(X)u(x). (13
function method

{—D, 2+ p}G(x,x")=8(x—x"), Here Flu,u.] has the same functional form as in EQ),
replacing¢ by u and ¢, by u.. Clearly, H also fulfills the

©) conditiondH/dt<0. The spatial nonlocal term in the NEP
takes into account the repulsion between activated zones.
When two activated zones approach each other, the exponen-

v(x)=,BJ dx'G(x,x")u(x"),

where the Green's functio®(x,x’) is given by tial tails of the inhibitor concentration overlap, increasing its
1 sink(L—x")] conce_ntration _between both activated zones and qreating an
T " “SsinHk(L+x)], X<X’ effectiverepulsion between them, the Green’s function play-
D,k sinf2KL] ing the role of an exponential screening between the acti-
G(x.x")=1{ 1 sinHk(L-x)] ’ , vated zones.
D_UKWSW[I((LH )], x>x, In Fig. 3 we show the dependence Af on u, for the

different stationary patterns, with=1 as in the previous
(10 case. The upper branch corresponds to the NEP evaluated on
the unstable patterm, ("), while the lower one corre-
with k=(»/D,)? This slaving procedure reduces our sys-sponds to the NEP evaluated on the stasienhomoge-
tem to anonlocalequation for the activator only, which has pegug patternug (#5). For the trivial homogeneous solution
the form uo we haveH’="H[ug,u.]=0. As for the local coupling
case, the lower branch® is negative for small, and be-
comes positive for larger values. At some intermediate point
uc=u? , we find thatHs="H[ us,uf ]="H°=0. Hence, at this
—Bf dx'G(x,x")u(x"). (11)  point the locally stable patterns, and u, exchange their
relative stabilities. Also, in the present case, as in the previ-
From this equation and taking the symmetry of the Green’®us one, for some value of, (larger tharug ) both branches
function G(x,x’) into account, we can obtain the NEP for u, andug coalesce and dissappear at a critical ppliti].
this system(which we will indicate byH[u,u,.] to avoid
confusion with the previous casevhich allows us to obtain

Au(x,t)=Dyd2u(x,t) —u(x,t) + Ou(x,t) — u)

I1l. STOCHASTIC RESONANT MEDIA
SH[u,u¢]

du(x,t)=— 50

(12 A. Local coupling
In order to study SR in an extended system or SRM, we
whereH[u,u.] has the form must introduce an external noise source and a weak signal
that modulates the potential about the situation in which
D, ) u? the two wells(representing the two stable statémve the
H(“):J dx 7{‘9xu} +5 —(U=Ul)O(u—ue) same depth. This is accomplished by letting the parameter
¢ oscillate aroundpy ,

IB ! ! !
+ Ef X' G XU )uCx) be(1) = ¢* + 5pcOL Ot + ), (14)
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t t+T/4 2 0o -
8
\ / \ I § 0.00 J
7 N\d \ & 008 010 012 014 016
¢, (arb. units)
t+T/2 t+3T/4 FIG. 5. Behavior, for the ballast model, of the barrier height as

a function of ¢.: 1 corresponds to the barrier fopg(x)

(AFA ¢s, 1) and 2 the barrier forby(X) (AF g, Pz 1). We took
L=1 andD=1.

FIG. 4. Qualitative(one dimensionalbehavior for the nonequi-
librium potential under the effect of an external modulation for the
ballast model. Herep,, ¢,, and ¢, indicate the “points” of the

trivial homogeneous solution, the unstable nonhomogeneous solu- . .. .
tion, and the stable nonhomogeneous solution, respectively. lAIso,SyStems such a kind of analysis is far from triviahd be-

indicates an arbitrary initial time, whil€ corresponds to the modu- YOnd the scope of the present stiidis we need to consider
lation period. a functional (or infinite-dimensional Fokker-Planck equa-

tion. Hence we adopt a viewpoint analogous to that used in

where ¢ is an arbitrary(randon) initial phase. We assume zero-dimensional systems, that is, to look for extensions of
that the amplitude of the modulatiodé,) is small enough the Kramers approach to the present situation.
in order not to destroy the bistability of the system. It is At this point we exploit a scheme, based on path-integral
worth remarking here that the present situation shows somiechniques, that allows us to describe the decay of extended
differences from the usual bistable systems. Here the stametastable statg82], yielding the following Kramers-like
¢o has alwaysF®=0, while what changes from being meta- result for the decaying time or first-passage titag:
stable to stabléor vice versais the statepy(x), that is, F°
lies above or belowF°=0, depending on whethep, is B AF ¢, ¢c]
larger or smaller tham} . Also, the barrier associated with {7)=ToeX 0% '
du(x), i.e., 7Y, increases or reduces accordingly. This be-
havior is qualitatively depicted in Fig. 4. where

In order to account for the effect of fluctuations, we in-
clude in the time evolution equation of our modEq. (1)] a AF ¢, dc]=F dunst¥) s de]l— FL dmetd V) dc]. (16)
fluctuating term&(x,t), which we model as an additive
Gaussian white noise source with zero mean value and &he prefactorry is determined by the curvature 61 ¢, ¢.]
correlation function( £(x,t) €(x’,t'))=2y58(t—t")5(x—x"),  at its extrema. The range of validity of this expression is
yielding a stochastic partial differential equation for the ran-analogous to that of the classical Kramers formula. As the
dom field ¢(x,t). The parametery denotes the noise approximation essentially rests on extracting the contribution
strength. from the most probable trajectory, its validity is also re-

Strictly speaking, the fluctuations cannot be Gaussian, bugtricted to a region where the noise intensity is much smaller
must have an absorbing boundary at the lower lfing., T than the barrier height. Due to the difficulties in improving
=0<Tg or ¢(x,t)=—Tg<O0 for the case of the ballast re- such an evaluation of the decay time, as in the case of non-
sistor] where the noise has to vanish. However, we expecextended systemfdl,7,8,12,16 we will continue using this
that the differences introduced by the Gaussian negative tagixpression even beyond its validity range. In Fig. 5 we show
beyond the indicated absorbing boundary will not drasticallythe form of AF[ ¢, ¢] (line 1) and A F[ ¢s, ¢ ] (line 2) as
change our resultéhis is in fact justified by the qualitative a function of¢.. Clearly, these curves are also related to the
agreement with the simulations of Rg&]). For this reason behavior of In(7)/ 7). For the spatially extended problem, we
and in order to simplify the analysis, in what follows we need to evaluate the space-time correlation function
assume that fluctuations are Gaussian. (&(y,t)p(y’,t")) and to make a double Fourier transform of

When studying zero-dimensional or nonextended systemthe correlation function in order to obtain, instead of the
the usual methodology has been to estimate the decayirgpwer spectrum, thgeneralized susceptibility(%, w) [22].
time by means of Kramers-like formulas. However, there To proceed with the calculation of the correlation function
have been a few attempts to go beyond such an approximave use a simplified point of viewdue to the bistable char-
tion (which, as a matter of fact, loses its validity when theacter of our problem potentjalbased on the two-state ap-
size of the fluctuations becomes of the same order as thgroach of McNamara and Wiesenfdlti6] and described in
barrier heighy, for instance, through a Floquet analyg3®] the Appendix, which allows us to apply some of their results
to study such a nonstationary situation. Clearly, for extendedlmost straightforwardly. We restrict the description by as-

(15
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suming that the relaxation of the system inside each basin of - '
attraction towards the corresponding attractor is much faster
than the typical transition time between attract@study of

the linear stability eigenvalues indicates that this is the case
if Q is small enough Hence we shall concentrate on the
transitions between both stationary statgg and ¢¢. To
calculate the correlation function we need to evaluate the
transition probabilities between our two staigg and ¢,
which appear in the associated master equation

Wos= 7o exp(— AF o5, el ¥), (17)

where 7, an estimation of the curvature at the potential ex- 000 002 004 006 008 o010
trema, is given by the asymptotically dominant linear stabil-
ity eigenvalues

ts)
N
~

uni

R (107 arb.

o
o
T

n (arb. units)

FIG. 6. SNR for the local coupling case, as a function of the

;o 2 noise intensityy [Eq. (17)], for (1) D=0.9,(2) =1.0, and(3) =1.1.
0 — 1 *
,/|)\un|)\st We fixed .= s , L=1, §¢.=0.01, and(2=0.01.

(A" is the only unstable eigenvalue aroupgandAStis the  tem studied in Ref[5], plays the role of the coupling param-
average of the minimum eigenvalues aroufidand ¢;) and  eter. This result is in excellent qualitative agreement with the
for small §¢, recent numerical results for a system of coupled nonlinear
overdamped oscillatod$].
IAFL b, b]

zon Lz B. Local plus nonlocal coupling

Af[¢,¢c]%Af[¢,¢:]+ 5¢c[

Here we proceed as in the previous case and consider that
XcogQt+ ). 18 o ;
g ¢ (18 the modulation is introduced through the activator threshold

In analogy to the nonextended case, we have assumed
here that, as we will only work in the limit of very small and
very slow modulation(that is, both 6¢. and 0 small
enough, the nonstationary transition probability can be per-where ug (as ¢¢ before is the threshold value at which
turbatively expanded id¢., as we only require the solution H[ug(x),us ]1=0. The choice of the parameters was such
of the master equation up to first order in this parameterthat we have a bistable situatigonly two attractorsin or-
Solving the master equation, it is possible to evaluate theler to be able to exploit the same approach indicated before
correlation function and to perform its Fourier transform in[32]. We assume that the noise only enté&dditively) into
time as well as in space in order to obtain the generalizethe activator equatiof33].
susceptibilityS(«,w). These expressions are similar to those The main difference from the previous case arises from
obtained by McNamara and Wiesenf¢ld] (see the Appen- the extra(nonloca) term in H[u,u.] when compared with
dix). Using a by now standard definition for the SNR, we [ ¢, ¢.] [see Eq.(13)]. Hence, in addition to the depen-
have shown in the Appendix that the relevant part of thedence onD (the analysis indicates that the dependence on

Uc(t)=u} + du.cof Qt+ o), (21

SNR is given by D, is negligible, we also have the dependence on the pa-
A 2
R~(—) ep-20A4,8207, (19
ToY 3k
—
with 2
=
Ao|d8F] 20 _2 2t
- d¢c ¢* QSC . ( ) !-Cg
c o
. . o S gL 2
Equation (19) is analogous to what has been obtained in <
zero-dimensional systems, but wheve 75, andA A ¢, ¢y | a4
contain all the relevant information regarding the spatially 1
extended character of the system. [ , L
In Fig. 6 we show the dependence of the present SNR on 0.8 0.9 1.0 1.1 12
v for typical values of the parametefsame as in the previ- D (arb. units
ous figureg and different values obD. We can see that the (arb. )
response increases for increasing value®ofn Fig. 7 we FIG. 7. For the local coupling case, the SNR as a functiob of

show the dependence of the SNir fixed nois¢ as a func-  for the same parameters as in Fig. 6 and two values of the noise
tion of D that, according to the continuous limit of the sys- intensity: (1) y=0.02 and(2) y=0.01.
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FIG. 8. SNR for the nonlocal coupling case, as a function of the T r r r r
noise intensityy [analogous to Eq17)], for (1) D,=0.9,(2) =1.0, 28F .
and (3) =1.1. We fixedu,=u? , L=1, 5a=0.01, andQ=0.01. ! /1,’/
The rest of the parameters are as in Fig. 3. :-9\ 2.6 b 1
= |
rameters, which measures the strength of the nonlocal cou- = 2.4 T
pling. In the limit of 3— 0, we exactly recover the case with "C% 3////
only a local interaction. e 22r T
It is clear that in the spatial bistable case, coming from the & 20 1
original excitable regime we have analyzed, we will obtain E ’ |
the same kind of result for the first-passage timg that is, 18L i
an equation similar to Eq(l5) but replacingAF by AH ) _31_—// ]
[with a definition analogous to Eq16)]. Using again the 16 S S R
two-state approacH 6], we will get expressions for the tran- 0.0 0.2 0.4 0.6 0.8 1.0
sition probabilitiesW ¢ similar to the ones indicated in Eq. B (arb. units)

(17). For smallSu. we will obtain
FIG. 9. SNR for the nonlocal coupling cage) as a function of

dAH[u,uc] D, for two values of the noise intensityl) y=0.02 and(2
AH[U'UC]QAH[U’UZ%L éa AU *cos(Qt+ ). =L6.01 and(b) as a function ofB for diffeyre)ntyvalues ofDu(: )(17)
u D,=1.1,(2) =1, and(3) =0.9. The rest of the parameters are as in
220 Fg. 8.
All these steps will lead us, in the present case, to an expres-
sion for the SNR analogous to the one in Etp), whereA F The case of local coupling corresponds to the continuous
is replaced byAH and 79, A are similar quantitiegan esti-  limit of the discrete model discussed by Lindretral. [5],

mation of the curvature at the potential extrema akhd which is associated with a coupled set of nonlinear oscilla-
=[dAH/duc]u: du., respectively. In Fig. 8 we show the tors in the overdamped limit. We have shown that, in agree-

dependence of the SNR on the noise intensity for three Valment with those Simulations, the present results indicate an
of the SNR(for fixed noise ang8) on D, while Fig. Qb)  StantD that plays the role of the coupling parameter. Such an
does the saméor fixed noise and,) on B. The enhance- effect is more remarkable for Dirichlet BCs than for Neu-

ment of the SNR with increasind, and/or 8 is apparent Mann BCs. This difference can be attributed, according to
from these figures. Eq. (19), to the fact that the size of the potential barrier

separating both attractors is larger for the latter than in the
former case. This difference in the barrier size can be inter-
V. DISCUSSION preted as follows. For Neumann BCs, the stable stationary
In order to study the phenomenon of SR in coupled omatterns have a homogeneous structure indicating a more
extended systems or SRMith the aim to encourage experi- “rigid” behavior when subject to fluctuations, implying that
mentalists dealing with distributed electronic, chemical, orthe transitions will be similar to the uncoupleDd € 0) case,
biological systems to search for alternative variables to tuna situation that can be easily evaluaf@9]. On the other
up so as to enhance the stochastic resonant response of tm&nd, for Dirichlet BCs, the nonhomogeneity of one of the
system we have analyzed two models corresponding to thestable stationary patterrig/ith part of the pattern below the
cases of local and local plus nonlocal coupling. These modthreshold¢.) makes it easier for the fluctuations to induce a
els are associated with a bistable monocomponent and dransition between both attractors. This interpretation, which
activator-inhibitor RD system, respectively. The analysisat first sight seems to be restricted to the present piecewise
was done by exploiting the knowledge of the form of thelinear model, can also be extended to more general bistable
nonequilibrium potential. models[29].
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It is worth remarking here that the present calculationsky for useful comments. Partial support from CONICET,
breaks down for large values &f. This is because, for in- Argentina, Project No. PIP-4953/96, and from Fundacio
creasingD, the curves in Fig. 2 shift to the left while the Antorchas are also acknowledged.
barrier separating the attractors tends to zero, making invalid
the applicability of Eq.(19). We see from Eq(1) that this APPENDIX
limit corresponds to diffusion in a monostable potential.

Regarding the activator-inhibitor case, the present results, According to the theory of McNamara and Wiesenfeld
in addition to the enhancement due to the local coupling, alspl6], the bistable case is reduced to a two-state system, char-
show an enhancement of the system’s response with the noaeterized by the occupation probabilities of both statgs
local coupling parameter. The main contribution to this ef-and n_ for the (symmetri¢ states—c and c, respectively
fect again comes from the reduction of the potential barrieqwith n, +n_=1). The master equation for these occupa-
when this parameter increases. It is clear that this systemjon probabilities is
corresponds to a more interesting and useful case of a non-
linear oscillator than for the local coupling case, describing n, (H)=W_(t)n_(t)—W, (t)n, (1), (A1)
not only a pure bistable but also an excitalféad more
realispic) situation. We must remark here that, as in the |Oca|vvherewi(t) are the(time-dependenttransition probabili-
coupling case, the present form of calculation for the nonlotjes from the right ¢) to the left (—c) well and vice versa,

cal coupling breaks down for large values[df or B forthe  yegpectively. The general solution solution of EA1) is
same reasons as before. The extension of the present form of

analysis to a full (nonslaved version of the activator- .

inhibitor case is under wajB4. n.(t)=9(t)
The relevance of these results for technological applica-

tions in signal detection as well as its biological implications

are apparenf35—40. Many distributed electronic circuits . _ t g3 / ,

can be regarded in the continuum limit as a set of diffusivelyWlth 9(t) = expfodt [W_ (') + W, (t) I

X . . ; In Ref.[16], to the lowest order in the amplitude of the
coupled nonlinear oscillators. With regard to chemical sys- : . :
. o . . . . modulation, the adopted form of the time-dependent transi-
tems, in addition to the particularly interesting results in ex-

periments on several reactions done under well-stirred cor;[lon probabilities wagsee Eq(3.7) in [16]]

ditions [14], there is a more recent and also closely related 1

experimental result that corresponds to the case of resonalV. (t)=f(uxe€ cos{Qt))mE[aoI ae cod Q)]+ 0(€?),
pattern formation in a chemical systdr5], indicating the (A3)
possibility of the appearance of SR under nonstirred condi-
tions. Even though such cases cannot be described by thgth ¢ a smallness parametéproportional to the modulation
activator-inhibitor model in the fast inhibitor limit, they amplitude and

make apparent the relevance of such results and the interest

t
n+(to)g(to)+ft dt'vv<t')g<t')},
i (A2)

of further studies exploiting the approach shown here. Since ag=2f(e=0),
the present resultpredict a strong dependence of the SR

upon both spatial and interspecies coupling parameters, we df
hope that they can motivate not only new simulations of “1:_2& )

coupled sets of such nonlinear oscillatérsthe spirit of the

numerical analysis of Re{5]), but also the experimental \yheref(u) is essentially given by the inverse of the Kram-

search of this spatially dependent phenomenon in chemicals time. Hence all the information about the transition prob-
and coupled electronic systems. In particular, we expect thalyijities is contained inr, and ay.

by exploiting an experimental setup similar to the one in Ref. " Tha result for the power spectrufsee Eqs(3.12 and
[15], with a low-amplitude(below thresholy forcing plus (3.13 in [16]] was
noise, a SRM phenomenon will show up.

Finally, it is worth noting that, in addition to the approxi- e 2 qnc2
mation involved in the Kramers-like expression in E#5) S(w)=|1- 21 5 > 0 >
and the two-level approximation used for the evaluation of 2(ap+Q%) || (agt )
the correlation function, all the previous resulisrm of the > 2 5
patterns and nonequilibrium potenjialre analytically exact. n TC € (80— )+ 8w+ 0)]. (Ad)
However, in a more careful analysis of the problem we can 2(a2+0?) '

expect different strengths for the SR phenomena for different
wavelengths that could lead to some kind of spatiotemporafrom this power spectrum the SNR results
synchronization phenomenon. The dependence of the gener-

alized susceptibilityS(«,w) on k and o, which will not waiez[ aiez
necessarily factorize, will also imply th&gy~Rsn(k, o). R(ag,a1)~—— { -
These aspects are currently under study. 0 2(ap Q%)

-1

(A5)

These results, obtained for the symmetric case, can be
inmediately adapted for the nonsymmetric case. Assume we

The authors thank V. Grunfeld for a critical reading of the have the minima at; and c, instead of at*c. Hence,
manuscript. H.S.W. thanks D. Zanette, B. Hess, and V. Krinchanging to new coordinates defined Yy=ax+b, with a

ACKNOWLEDGMENTS
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=(c,—cy)/2 andb=(c,+c,)/2, the correlation function will spatially independent SNRts double Fourier transform
be multiplied bya® and we must replace? by [c,—c,/2]?>  yields the generalized susceptibility given by
in the power spectrum and similarly in the SNR.

In our casgsay, the local coupling oneve have reduced _
our problem to the transitions between two statgs=0 and Sl 0)=F(x)S(0), (A6)
#<(x), in the neighborhood of the bistable poift= ¢y .
With the above-indicated change in the nonsymmetriovhere F(x)~ &(«), k and w being the Fourier conjugate
bistable case and taking into account the form¥\gt indi-  variables to the space and time onBéw), the usual power
cated by Eqgs(17) and(18), we can identify the actual forms spectrum functior{function only of w), again becomes the
of @y anda;, yielding an expression for the correlation func- relevant quantity. Finally, the relevant contribution for the
tion similar to Eq.(3.12 in Ref.[16], where we shall iden- SNR is the one indicated in Eq19) with A given by Eq.
tify ¢, by ¢o(x) andc, by ¢4(x), yielding an essentially (20).
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